Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Front Cardiovasc Med ; 11: 1347552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628317

RESUMO

Background: The cardioprotective effect of remote ischemia preconditioning in clinical studies is inconsistent with experimental results. Adaptation to high-altitude hypoxia has been reported to be cardioprotective in animal experiments. However, the clinical significance of the cardioprotective effect of high-altitude adaptation has not been demonstrated. Methods: A retrospective cohort study with propensity score matching was designed to compare the outcomes of cardiac surgery between highlanders and lowlanders in a tertiary teaching hospital. The data of adult cardiac surgical patients from January 2013 to December 2022, were collected for analysis. Patients with cardiopulmonary bypass and cardioplegia were divided into a low-altitude group (<1,500 m) and a high-altitude group (≥1,500 m) based on the altitude of their place of residence. Results: Of 3,020 patients, the majority (87.5%) permanently lived in low-altitude regions [495 (435, 688) m], and there were 379 patients (12.5%) in the high-altitude group [2,552 (1,862, 3,478) m]. The 377 highlander patients were matched with lowlander patients at a ratio of 1:1. The high-altitude group exhibited a 44.5% reduction in the incidence of major adverse cardiovascular events (MACEs) compared with the low-altitude group (6.6% vs. 11.9%, P = 0.017). The patients in the moderate high-altitude subgroup (2,500-3,500 m) had the lowest incidence (5.6%) of MACEs among the subgroups. The level of creatinine kinase muscle-brain isoenzymes on the first postoperative morning was lower in the high-altitude group than in the low-altitude group (66.5 [47.9, 89.0] U/L vs. 69.5 [49.3, 96.8] U/L, P = 0.003). Conclusions: High-altitude adaptation exhibits clinically significant cardioprotection in cardiac surgical patients.

2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 33-38, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38433628

RESUMO

Objective To visualize the research status and hotspots of women's common disease screening based on CiteSpace 6.1.R6,and to provide a reference for the in-depth research in this field thereafter. Methods The relevant articles were retrieved from the China National Knowledge Infrastructure with the time interval from January 1,1992 to December 13,2022.The analysis was conducted on the number of annual publications,countries(regions),institutions,author collaboration networks,keyword co-occurrence,clustering,and bursts. Results A total of 900 papers that met the criteria were included,and the number of annual publications showed a trend of first increasing and then decreasing.The cross-institutional collaboration network was mature.The research hotspots mainly covered women's health,the prevalence of women's diseases,reproductive health,and breast diseases.The hotspots have evolved from an initial focus on reproductive health care to gynecological disease management,and eventually to reproductive health and holistic health care in women. Conclusions The attention should be kept on the screening of women's common diseases.It is advisable to synchronize the screening of women's common diseases with the screening of cervical and breast cancers to expand the screening coverage,promote early disease detection and treatment,and comprehensively safeguard women's health.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Masculino , China/epidemiologia , Pescoço
3.
Anal Chem ; 96(8): 3525-3534, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38345335

RESUMO

Anaplastic lymphoma kinase (ALK) rearrangements have been identified as key oncogenic drivers of a subset of nonsmall cell lung cancer (NSCLC). The final chimeric protein of the fusion gene can be constitutively activated, which accounts for the growth and proliferation of ALK-rearranged tumors and thus strongly associates with cancer invasion and metastasis. Diagnostic tools enabling the visualization of ALK activity in a structure-function-based approach are highly desirable to determine ALK status and guide ALK tyrosine kinase inhibitor (ALK-TKI) treatment making. Here, we describe the design, synthesis, and application of a new environment-sensitive fluorescent probe HX16 by introducing an environment-sensitive fluorophore 4-sulfonamidebenzoxadiazole to visualize ALK activity in living cancer cells and tumor tissue slices (mouse model and human biopsy sample). HX16 is a multifunctional chemical tool based on the pharmacophore of ALK-TKI (ceritinib) and can specifically target the kinase domain of ALK with a high sensitivity. Using flow cytometry and confocal microscopy, HX16 enables visualization of ALK activity in various cancer cells with distinct ALK fusion genes, as well as xenograft mouse models. Importantly, HX16 was also applied to visualize ALK activity in a tumor biopsy from a NSCLC patient with ALK-echinoderm microtubule-associated protein-like-4 fusion gene for prediction of ALK-TKI sensitivity. These results demonstrate that strategically designed ALK-TKI-based probe allows the assessment of ALK activity in tumor tissues and hold promise as a useful diagnostic tool in predicting ALK-TKI therapy response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Quinase do Linfoma Anaplásico/genética , Corantes Fluorescentes , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases , Inibidores de Proteínas Quinases/farmacologia
4.
ACS Nano ; 18(9): 7046-7063, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38381372

RESUMO

Type 2 alveolar epithelial cell (AEC2) senescence is crucial to the pathogenesis of pulmonary fibrosis (PF). The nicotinamide adenine dinucleotide (NAD+)-consuming enzyme cluster of differentiation 38 (CD38) is a marker of senescent cells and is highly expressed in AEC2s of patients with PF, thus rendering it a potential treatment target. Umbilical cord mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) have emerged as a cell-free treatment with clinical application prospects in antiaging and antifibrosis treatments. Herein, we constructed CD38 antigen receptor membrane-modified MSC-EVs (CD38-ARM-MSC-EVs) by transfecting MSCs with a lentivirus loaded with a CD38 antigen receptor-CD8 transmembrane fragment fusion plasmid to target AEC2s and alleviate PF. Compared with MSC-EVs, the CD38-ARM-MSC-EVs engineered in this study showed a higher expression of the CD38 antigen receptor and antifibrotic miRNAs and targeted senescent AEC2s cells highly expressing CD38 in vitro and in naturally aged mouse models after intraperitoneal administration. CD38-ARM-MSC-EVs effectively restored the NAD+ levels, reversed the epithelial-mesenchymal transition phenotype, and rejuvenated senescent A549 cells in vitro, thereby mitigating multiple age-associated phenotypes and alleviating PF in aged mice. Thus, this study provides a technology to engineer MSC-EVs and support our CD38-ARM-MSC-EVs to be developed as promising agents with high clinical potential against PF.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Células Epiteliais Alveolares , NAD/metabolismo , Vesículas Extracelulares/metabolismo , Receptores de Antígenos/metabolismo
5.
Eur J Med Chem ; 265: 116115, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38199166

RESUMO

Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.


Assuntos
Neoplasias , 60687 , Humanos , Ciclo Celular , Mitose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , 60687/antagonistas & inibidores , 60687/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/efeitos dos fármacos
6.
Water Environ Res ; 96(2): e10983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38291820

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are now widely found in aquatic ecosystems, including sources of drinking water and portable water, due to their increasing prevalence. Among different PFAS treatment or separation technologies, nanofiltration (NF) and reverse osmosis (RO) both yield high rejection efficiencies (>95%) of diverse PFAS in water; however, both technologies are affected by many intrinsic and extrinsic factors. This study evaluated the rejection of PFAS of different carbon chain length (e.g., PFOA and PFBA) by two commercial RO and NF membranes under different operational conditions (e.g., applied pressure and initial PFAS concentration) and feed solution matrixes, such as pH (4-10), salinity (0- to 1000-mM NaCl), and organic matters (0-10 mM). We further performed principal component analysis (PCA) to demonstrate the interrelationships of molecular weight (213-499 g·mol-1 ), membrane characteristics (RO or NF), feed water matrices, and operational conditions on PFAS rejection. Our results confirmed that size exclusion is a primary mechanism of PFAS rejection by RO and NF, as well as the fact that electrostatic interactions are important when PFAS molecules have sizes less than the NF membrane pores. PRACTITIONER POINTS: Two commercial RO and NF membranes were both evaluated to remove 10 different PFAS. High transmembrane pressures facilitated permeate recovery and PFAS rejection by RO. Electrostatic repulsion and pore size exclusion are dominant rejection mechanisms for PFAS removal. pH, ionic strength, and organic matters affected PFAS rejection. Mechanisms of PFAS rejection with RO/NF membranes were explained by PCA analysis.


Assuntos
Fluorocarbonos , Purificação da Água , Água , Ecossistema , Purificação da Água/métodos , Osmose , Membranas Artificiais , Filtração/métodos
7.
Br J Anaesth ; 132(1): 45-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007377

RESUMO

BACKGROUND: Preliminary clinical trials of adamgammadex, a new cyclodextrin-based selective reversal agent, have demonstrated its efficacy in reversing neuromuscular block by rocuronium. METHODS: This multicentre, randomised, double-blind, positive-controlled, non-inferiority phase III clinical trial compared the efficacy and safety of adamgammadex and sugammadex. We randomised 310 subjects to receive adamgammadex (4 mg kg-1) or sugammadex (2 mg kg-1) at reappearance of the second twitch of the train-of-four (TOF), and standard safety data were collected. RESULTS: For the primary outcome, the proportion of patients with TOF ratio ≥0.9 within 5 min was 98.7% in the adamgammadex group vs 100% in the sugammadex group, with a point estimate and 95% confidence interval (CI) of 1.3% (-4.6%, +1.3%); the lower limit was greater than the non-inferiority margin of -10%. For the key secondary outcome, the median (inter quartile range) time from the start of administration of adamgammadex or sugammadex to recovery of TOF ratio to 0.9 was 2.25 (1.75, 2.75) min and 1.75 (1.50, 2.00) min, respectively. The difference was 0.50 (95% CI: 0.25, 0.50); the upper limit was lower than the non-inferiority margin of 5 min. In addition, there were no inferior results observed in secondary outcomes. Adamgammadex had a lower incidence of adverse drug reactions compared with sugammadex (anaphylactic reaction, recurarisation, decreased heart rate, and laryngospasm; P=0.047). CONCLUSIONS: Adamgammadex was non-inferior to sugammadex with a possible lower incidence of adverse drug reactions compared with sugammadex. Adamgammadex may have a potential advantage in terms of its overall risk-benefit profile. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2000039525. Registered October 30, 2020. https://www.chictr.org.cn/showproj.html?proj=56825.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Bloqueio Neuromuscular , Fármacos Neuromusculares não Despolarizantes , gama-Ciclodextrinas , Humanos , Sugammadex/efeitos adversos , Rocurônio , Bloqueio Neuromuscular/métodos , gama-Ciclodextrinas/efeitos adversos , Fármacos Neuromusculares não Despolarizantes/efeitos adversos , Androstanóis/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia
8.
Microorganisms ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38004794

RESUMO

Soil microbial taxa have different functional ecological characteristics that influence the direction and intensity of plant-soil feedback responses to changes in the soil environment. However, the responses of soil microbial survival strategies to wet and dry events are poorly understood. In this study, soil physicochemical properties, enzyme activity, and high-throughput sequencing results were comprehensively anal0079zed in the irrigated cropland ecological zone of the northern plains of the Yellow River floodplain of China, where Oryza sativa was grown for a long period of time, converted to Zea mays after a year, and then Glycine max was planted. The results showed that different plant cultivations in a paddy-dryland rotation system affected soil physicochemical properties and enzyme activity, and G. max field cultivation resulted in higher total carbon, total nitrogen, soil total organic carbon, and available nitrogen content while significantly increasing α-glucosidase, ß-glucosidase, and alkaline phosphatase activities in the soil. In addition, crop rotation altered the r/K-strategist bacteria, and the soil environment was the main factor affecting the community structure of r/K-strategist bacteria. The co-occurrence network revealed the inter-relationship between r/K-strategist bacteria and fungi, and with the succession of land rotation, the G. max sample plot exhibited more stable network relationships. Random forest analysis further indicated the importance of soil electrical conductivity, total carbon, total nitrogen, soil total organic carbon, available nitrogen, and α-glucosidase in the composition of soil microbial communities under wet-dry events and revealed significant correlations with r/K-strategist bacteria. Based on the functional predictions of microorganisms, wet-dry conversion altered the functions of bacteria and fungi and led to a more significant correlation between soil nutrient cycling taxa and environmental changes. This study contributes to a deeper understanding of microbial functional groups while helping to further our understanding of the potential functions of soil microbial functional groups in soil ecosystems.

9.
Transl Neurosci ; 14(1): 20220320, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37954153

RESUMO

Spinal cord injury (SCI) is a serious disabling injury, and the main factors causing SCI in patients include car accidents, falls from heights, as well as heavy blows and falls. These factors can all cause spinal cord compression or even complete rupture. After SCI, problems with the movement, balance, and walking ability of the lower limbs are most common, and SCI can cause abnormalities in patient's movement, sensation, and other aspects. Therefore, in the treatment of SCI, it is necessary to strengthen the rehabilitation training (RT) of patients based on data science to improve their motor ability and play a positive role in the recovery of their walking ability. This article used lower limb rehabilitation robot (LLRR) to improve the walking ability of SCI patients and applied them to SCI rehabilitation. The purpose is to improve the limb movement function of patients by imitating and assisting their limb movements, thereby achieving pain relief and muscle strength enhancement and promoting rehabilitation. The experimental results showed that the functional ambulation category (FAC) scale scores of Group A and Group B were 0.79 and 0.81, respectively, in the first 10 weeks of the experiment. After 10 weeks of the experiment, the FAC scores of Group A and Group B were 2.42 and 4.36, respectively. After the experiment, the FAC score of Group B was much higher than that of Group A, indicating that Group B was more effective in improving patients' walking ability compared to Group A. This also indicated that LLRR rehabilitation training can enhance the walking ability of SCI patients.

10.
Cell Commun Signal ; 21(1): 260, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749626

RESUMO

BACKGROUND: Apoptotic vesicles are extracellular vesicles generated by apoptotic cells that were previously regarded as containing waste or harmful substances but are now thought to play an important role in signal transduction and homeostasis regulation. METHODS: In the present review, we reviewed many articles published over the past decades on the subtypes and formation of apoptotic vesicles and the existing applications of these vesicles. RESULTS: Apoptotic bodies were once regarded as vesicles released by apoptotic cells, however, apoptotic vesicles are now regarded to include apoptotic bodies, apoptotic microvesicles and apoptotic exosomes, which exhibit variation in terms of biogenesis, sizes and properties. Applications of apoptotic vesicles were first reported long ago, but such reports have been rarer than those of other extracellular vesicles. At present, apoptotic vesicles have been utilized mainly in four aspects, including in direct therapeutic applications, in their engineering as carriers, in their construction as vaccines and in their utilization in diagnosis. CONCLUSION: Building on a deeper understanding of their composition and characteristics, some studies have utilized apoptotic vesicles to treat diseases in more novel ways. However, their limitations for clinical translation, such as heterogeneity, have also emerged. In general, apoptotic vesicles have great application potential, but there are still many barriers to overcome in their investigation. Video Abstract.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Homeostase , Transdução de Sinais
11.
Cardiovasc Res ; 119(16): 2607-2622, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37713664

RESUMO

AIMS: Endurance exercise is associated with an increased risk of atrial fibrillation (AF). We previously established that adverse atrial remodelling and AF susceptibility induced by intense exercise in mice require the mechanosensitive and pro-inflammatory cytokine tumour necrosis factor (TNF). The cellular and mechanistic basis for these TNF-mediated effects is unknown. METHODS AND RESULTS: We studied the impact of Tnf excision, in either atrial cardiomyocytes or endothelial cells (using Cre-recombinase expression controlled by Nppa or Tie2 promoters, respectively), on the cardiac responses to six weeks of intense swim exercise training. TNF ablation, in either cell type, had no impact on the changes in heart rate, autonomic tone, or left ventricular structure and function induced by exercise training. Tnf excision in atrial cardiomyocytes did, however, prevent atrial hypertrophy, fibrosis, and macrophage infiltration as well as conduction slowing and increased AF susceptibility arising from exercise training. In contrast, endothelial-specific excision only reduced the training-induced atrial hypertrophy. Consistent with these cell-specific effects of Tnf excision, inducing TNF loss from atrial cardiomyocytes prevented activation of p38MAPKinase, a strain-dependent downstream mediator of TNF signalling, without affecting the atrial stretch as assessed by atrial pressures induced by exercise. Despite TNF's established role in innate immune responses and inflammation, neither acute nor chronic exercise training caused measurable NLRP3 inflammasome activation. CONCLUSIONS: Our findings demonstrate that adverse atrial remodelling and AF vulnerability induced by intense exercise require TNF in atrial cardiomyocytes whereas the impact of endothelial-derived TNF is limited to hypertrophy modulation. The implications of the cell autonomous effects of TNF and crosstalk between cells in the atria are discussed.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Cardiomiopatias , Animais , Camundongos , Fibrilação Atrial/etiologia , Fibrilação Atrial/prevenção & controle , Fibrilação Atrial/patologia , Miócitos Cardíacos/metabolismo , Células Endoteliais/metabolismo , Átrios do Coração , Fator de Necrose Tumoral alfa/metabolismo , Cardiomiopatias/metabolismo , Hipertrofia/complicações , Hipertrofia/metabolismo
13.
Pharmaceutics ; 15(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765258

RESUMO

There has been increasing interest and rapid developments in precision medicine, which is a new medical concept and model based on individualized medicine with the joint application of genomics, bioinformatics engineering, and big data science. By applying numerous emerging medical frontier technologies, precision medicine could allow individualized and precise treatment for specific diseases and patients. This article reviews the application and progress of advanced technologies in the anesthesiology field, in which nanotechnology and genomics can provide more personalized anesthesia protocols, while 3D printing can yield more patient-friendly anesthesia supplies and technical training materials to improve the accuracy and efficiency of decision-making in anesthesiology. The objective of this manuscript is to analyze the recent scientific evidence on the application of nanotechnology in anesthesiology. It specifically focuses on nanomedicine, precision medicine, and clinical anesthesia. In addition, it also includes genomics and 3D printing. By studying the current research and advancements in these advanced technologies, this review aims to provide a deeper understanding of the potential impact of these advanced technologies on improving anesthesia techniques, personalized pain management, and advancing precision medicine in the field of anesthesia.

14.
J Am Chem Soc ; 145(37): 20412-20421, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37651106

RESUMO

Somatic mutations are important signatures in clinical cancer treatment. However, accurate detection of rare somatic mutations with low variant-allele frequencies (VAFs) in clinical samples is challenging because of the interference caused by high concentrations of wild-type (WT) sequences. Here, we report a post amplification SNV-specific DNA assembly (PANDA) technology that eliminates the high concentration pressure caused by WT through a mismatch-guided DNA assembly and enables the ultrasensitive detection of cancer mutations with VAFs as low as 0.1%. Because it generates an assembly product that only exposes a single-stranded domain with the minimal length for signal readout and thus eliminates possible interferences from secondary structures and cross-interactions among sequences, PANDA is highly versatile and expandable for multiplex testing. With ultrahigh sensitivity, PANDA enabled the quantitative analysis of EGFR mutations in cell-free DNA of 68 clinical plasma samples and four pleuroperitoneal fluid samples, with test results highly consistent with NGS deep sequencing. Compared to digital PCR, PANDA returned fewer false negatives and ambiguous cases of clinical tests. Meanwhile, it also offers much lower upfront instrumental and operational costs. The multiplexity was demonstrated by developing a 3-plex PANDA for the simultaneous analysis of three EGFR mutations in 54 pairs of tumor and the adjacent noncancerous tissue samples collected from lung cancer patients. Because of the ultrahigh sensitivity, multiplexity, and simplicity, we anticipate that PANDA will find wide applications for analyzing clinically important rare mutations in diverse devastating diseases.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Alelos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , DNA/genética , Receptores ErbB
15.
Front Immunol ; 14: 1157813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398647

RESUMO

Outer membrane vesicles (OMVs) are spherical, bilayered, and nanosized membrane vesicles that are secreted from gram-negative bacteria. OMVs play a pivotal role in delivering lipopolysaccharide, proteins and other virulence factors to target cells. Multiple studies have found that OMVs participate in various inflammatory diseases, including periodontal disease, gastrointestinal inflammation, pulmonary inflammation and sepsis, by triggering pattern recognition receptors, activating inflammasomes and inducing mitochondrial dysfunction. OMVs also affect inflammation in distant organs or tissues via long-distance cargo transport in various diseases, including atherosclerosis and Alzheimer's disease. In this review, we primarily summarize the role of OMVs in inflammatory diseases, describe the mechanism through which OMVs participate in inflammatory signal cascades, and discuss the effects of OMVs on pathogenic processes in distant organs or tissues with the aim of providing novel insights into the role and mechanism of OMVs in inflammatory diseases and the prevention and treatment of OMV-mediated inflammatory diseases.


Assuntos
Membrana Externa Bacteriana , Vesículas Extracelulares , Humanos , Membrana Externa Bacteriana/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo
16.
Psychol Res Behav Manag ; 16: 2425-2436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426391

RESUMO

Purpose: To explore the structure of postgraduate research innovation ability and verify the Postgraduate Research Innovation Ability Scale. Patients and Methods: This study was based on the componential theory of creativity. First, we drafted an item pool from the literature review, semi-structured interviews, and group discussions. A total of 125 postgraduates were selected for the pre-test. After item selection and exploratory factor analysis, an 11-item, 3-factor postgraduate research innovation ability scale was formed. The scale was applied to a sample of 330 postgraduates from various domestic universities. Exploratory factor analysis and confirmatory factor analysis were used to examine the factor structure of the scales. Results: The results support a three-factor model including creativity-relevant processes, domain-relevant skills, and intrinsic motivation for the Postgraduate Research Innovation Ability Scale. The scale showed good internal consistency (α =0.89) and test-retest reliability (r=0.86). Exploratory factor analysis showed that the KMO value was 0.87, and the Bartlett's sphericity test results were significant. Confirmatory factor analysis confirmed that the three-factor construct demonstrated a good model fit (χ2/df=1.945, GFI=0.916, CFI=0.950, RMSEA=0.076). Conclusion: The Postgraduate Research Innovation Ability Scale has good reliability and validity, and it can be used for future research in related fields.

17.
Nat Commun ; 14(1): 4248, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460620

RESUMO

The binding of small molecules to the double helical structure of DNA, through either intercalation or minor groove binding, may significantly alter the stability and functionality of DNA, which is a fundamental basis for many therapeutic and sensing applications. Here, we report that small-molecule DNA binders can also be used to program reaction pathways of a dynamic DNA reaction, where DNA strand displacement can be tuned quantitatively according to the affinity, charge, and concentrations of a given DNA binder. The binder-induced nucleic acid strand displacement (BIND) thus enables innovative technologies to accelerate the discovery and characterization of bioactive small molecules. Specifically, we demonstrate the comprehensive characterization of existing and newly discovered DNA binders, where critical parameters for binding affinity and sequence selectivity can be obtained in a single, unbiased molecular platform without the need for any specialized equipment. We also engineer a tandem BIND system as a high-throughput screening assay for discovering DNA binders, through which 8 DNA binders were successfully discovered from a library of 700 compounds.


Assuntos
Antineoplásicos , DNA , DNA/metabolismo
18.
Membranes (Basel) ; 13(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505007

RESUMO

The paper presents a new methodology for short-term (5-25 min) benchtop tests to evaluate the effectiveness of magnetic treatment of feed water for reducing mineral scaling on a reverse osmosis (RO) membrane. Scale deposition is measured at a controlled level of salt supersaturation in water flowing through an RO unit in once-through mode. A magnetic water conditioner is tested in a transient flow regime when variations of the permeate flux along the flow path are insignificant. Scale formation under these conditions is governed by salt crystallization on the membrane surface. The proposed method was implemented to investigate the influence of magnetic treatment on gypsum deposition on RO membranes in supersaturated aqueous CaSO4/NaCl solutions. The effects of magnetic water treatment on scale formation under our experimental conditions were found to be statistically insignificant with a confidence level of 95%. However, this outcome should not be considered to negate the potential efficiency of magnetic water treatment in specific applications. The proposed methodology of testing under a controlled level of salt supersaturation will also be useful for evaluating the efficiency of other water treatment technologies.

19.
Stem Cell Res Ther ; 14(1): 176, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422687

RESUMO

BACKGROUND: Dental pulp stem cells (DPSCs) play a crucial role in dentin-pulp complex regeneration. Further understanding of the mechanism by which DPSCs remain in a quiescent state could contribute to improvements in the dentin-pulp complex and dentinogenesis. METHODS: TSC1 conditional knockout (DMP1-Cre+; TSC1f/f, hereafter CKO) mice were generated to increase the activity of mechanistic target of rapamycin complex 1 (mTORC1). H&E staining, immunofluorescence and micro-CT analysis were performed with these CKO mice and littermate controls. In vitro, exosomes were collected from the supernatants of MDPC23 cells with different levels of mTORC1 activity and then characterized by transmission electron microscopy and nanoparticle tracking analysis. DPSCs were cocultured with MDPC23 cells and MDPC23 cell-derived exosomes. Alizarin Red S staining, ALP staining, qRT‒PCR, western blotting analysis and micro-RNA sequencing were performed. RESULTS: Our study showed that mTORC1 activation in odontoblasts resulted in thicker dentin and higher dentin volume/tooth volume of molars, and it increased the expression levels of the exosome markers CD63 and Alix. In vitro, when DPSCs were cocultured with MDPC23 cells, odontoblastic differentiation was inhibited. However, the inhibition of odontoblastic differentiation was reversed when DPSCs were cocultured with MDPC23 cells with mTORC1 overactivation. To further study the effects of mTORC1 on exosome release from odontoblasts, MDPC23 cells were treated with rapamycin or shRNA-TSC1 to inactivate or activate mTORC1, respectively. The results revealed that exosome release from odontoblasts was negatively correlated with mTORC1 activity. Moreover, exosomes derived from MDPC23 cells with active or inactive mTORC1 inhibited the odontoblastic differentiation of DPSCs at the same concentration. miRNA sequencing analysis of exosomes that were derived from shTSC1-transfected MDPC23 cells, rapamycin-treated MDPC23 cells or nontreated MDPC23 cells revealed that the majority of the miRNAs were similar among these groups. In addition, exosomes derived from odontoblasts inhibited the odontoblastic differentiation of DPSCs, and the inhibitory effect was positively correlated with exosome concentration. CONCLUSION: mTORC1 regulates exosome release from odontoblasts to inhibit the odontoblastic differentiation of DPSCs, but it does not alter exosomal contents. These findings might provide a new understanding of dental pulp complex regeneration.


Assuntos
Exossomos , Odontoblastos , Camundongos , Animais , Proteínas da Matriz Extracelular/metabolismo , Polpa Dentária/metabolismo , Exossomos/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Células Cultivadas
20.
Front Immunol ; 14: 1190607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325667

RESUMO

As a chronic progressive autoimmune disease, rheumatoid arthritis (RA) is characterized by mainly damaging the synovium of peripheral joints and causing joint destruction and early disability. RA is also associated with a high incidence rate and mortality of cardiovascular disease. Recently, the relationship between lipid metabolism and RA has gradually attracted attention. Plasma lipid changes in RA patients are often detected in clinical tests, the systemic inflammatory status and drug treatment of RA patients can interact with the metabolic level of the body. With the development of lipid metabolomics, the changes of lipid small molecules and potential metabolic pathways have been gradually discovered, which makes the lipid metabolism of RA patients or the systemic changes of lipid metabolism after treatment more and more comprehensive. This article reviews the lipid level of RA patients, as well as the relationship between inflammation, joint destruction, cardiovascular disease, and lipid level. In addition, this review describes the effect of anti-rheumatic drugs or dietary intervention on the lipid profile of RA patients to better understand RA.


Assuntos
Antirreumáticos , Artrite Reumatoide , Doenças Cardiovasculares , Humanos , Metabolismo dos Lipídeos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/tratamento farmacológico , Antirreumáticos/uso terapêutico , Lipídeos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...